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Calibration of ABMs

Why is it hard?
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Calibration requirements

1. Uncertainty quantification

|deally we want to get all 6 that can generate x with a certain probability

— Infections mainly through schools

Exa m p I e 20 - Infections mainly through companies

- (Observed data

ot
o

Epidemiological model with 2 parameters:

Infections
[WEN
o

1. Reproduction number at schools

2. Reproduction number at companies 0 -

0 2 4 6 8 10 12 14
Number of days



Calibration requirements
1. Uncertainty quantification (UQ)

— Infections mainly through schools
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Infections

Calibration requirements
2. Expert (prior) knowledge

— Infections mainly through schools
20 - Infections mainly through companies
— Observed data
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Need to include prior information
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Bayesian inference

Allows to tackle both problems

p@|x) x p(x|60) p(0)
e

likelihood

school

e

i

posterior

:

company school

20 T

[N
(@)

Infections
(WY
o

prior
- (Observed data
/‘,’
/
7
7
,,
)’7 £L0 v ot WY
-r-r"'/\’/ A v
0 2 4 6 8 10 12 14

Number of days




Likelihood p( x | ) is intractable for ABMs

Proposed solutions include

=mulation Neural density ratio estimation

Approximate Bayesian Computation



Variational Inference:
Bayesian inference as an optimisation problem

1. Assume posterior can be

approximated by a family of
distributions

2. Optimise for optimal
parameters




Generalised Variational Inference «nobiauch etal. 2022)
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Gradients: path-wise vs score

* (Gradient-assisted calibration algorithms need
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* Two ways of obtaining the gradient:

1. Differentiating the measure (score-based gradient)

2. Differentiating the simulator (path-wise gradient)

Typically path-wise gradient has (much) lower variance (see Mohamed (2019))



Differentiable simulators

* | everage Automatic Differentiation to build simulators

e Use “reparameterisation” techniques to differentiate through randomness.

x~N(u,0) &< x=u+or r~ N0O,1)
dx dx

—=]1 — =7
du do



Differentiable ABMs

The problem of discrete randomness
* Discrete sampling + flow control = no differentiability?

e Gumbel-Softmax
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Differentiable Agent-Based Epidemiology

Chopra et al. (2023), Quera-Bofarull et al. (2023)

JUNE model
8 M agents (London)

Simulation
NE
¥ 50 hours
GRADABM-JUNE . x40,000 speed-up !
(CPU) 5 minutes
GRADABM-JUNE . q
(GPU) seconds




Bayesian Inference for Differentiable
Simulators (BIRDS)
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Normalizing Flows

What do we choose for q? Image credit: Lilian Weng
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Bayesian Inference for Differentiable
Simulators (BIRDS)
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Experiment with JUNE

 ABM model of Covidi19
* Model
¢ ~200k agents
* 3 layers of interactions (household, company, school)

» Calibrate to synthetic data



Loss

beta_household = 0.11+32%

beta_company = 0.36923
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Conclusions

1. Bayesian approaches to calibrating ABMs have humerous
benefits

2. ABMs can be made differentiable even with discrete
randomness and control flow

3. Diff simulators + Bayesian inference (via Normalizing Flows)
promising route to calibrate large-scale ABMs efficiently

Paper + slides: www.arnau.ai/iclr
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