Bayesian calibration of differentiable agent-based models

Arnau Quera-Bofarull, Ayush Chopra, Anisoara Calinescu, Michael Wooldridge, Joel Dyer

AI4ABM workshop – ICLR 2023

Calibration of ABMs

Why is it hard?

X Expensive simulator

+

Н Large parameter space

Calibration requirements 1. Uncertainty quantification

Example

Epidemiological model with 2 parameters:

- Reproduction number at schools
- 2. Reproduction number at companies

Ideally we want to get all θ that can generate x with a certain probability

Calibration requirements 2. Expert (prior) knowledge

Need to include prior information in our calibration process

Bayesian inference Allows to tackle both problems likelihood posterior D. V school 0 N V De 0 0 V N N Dr. school company

Likelihood p($x \mid \theta$) is intractable for ABMs

Proposed solutions include Neural density ratio estimation **Approximate Bayesian Computation**

Emulation

Variational Inference: **Bayesian inference as an optimisation problem**

- 1. Assume posterior can be approximated by a family of distributions
- 2. Optimise for optimal parameters

Gradients: path-wise vs score

Gradient-assisted calibration algorithms need

posterior estimator

- Two ways of obtaining the gradient:
- 1. Differentiating the measure (score-based gradient)
- 2. Differentiating the simulator (path-wise gradient)

Typically path-wise gradient has (much) lower variance (see Mohamed (2019))

Differentiable simulators

- Leverage Automatic Differentiation to build simulators
- Use "reparameterisation" techniques to differentiate through randomness.

 $x \sim \mathcal{N}(\mu, \sigma) \iff x = \mu + \sigma r \quad r \sim \mathcal{N}(0, 1)$ $\frac{\mathrm{d}x}{\mathrm{d}\mu} = 1 \quad \frac{\mathrm{d}x}{\mathrm{d}\sigma} = r$

Differentiable ABMs

The problem of discrete randomness

- Discrete sampling + flow control = no differentiability?
 - Gumbel-Softmax

Jang et al. (2016)

Differentiable Agent-Based Epidemiology

Chopra et al. (2023), Quera-Bofarull et al. (2023)

JUNE model 8 M agents (London)

	Simulatior
JUNE	50 hours
GradABM-June (CPU)	5 minutes
GradABM-June (GPU)	5 seconds

Normalizing Flows What do we choose for q?

Image credit: Lilian Weng

Bayesian Inference for Differentiable Simulators (BIRDS)

Experiment with JUNE

- ABM model of Covid19
- Model
 - ~200k agents
 - 3 layers of interactions (household, company, school)
 - Calibrate to synthetic data

beta_household

beta_company

beta_school

Conclusions

- Bayesian approaches to cal benefits
- 2. ABMs can be made differentiable even with discrete randomness and control flow
- 3. Diff simulators + Bayesian inference (via Normalizing Flows) promising route to calibrate large-scale ABMs efficiently

Paper + slides: www.arnau.ai/iclr

1. Bayesian approaches to calibrating ABMs have numerous

