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Differentiable Simulators
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Differentiation of Computer Programs

Numerical differentiation
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Differentiation of Computer Programs

Symbolic differentiation

f(x) = 2x + sin(x))x*(x + 3)(x + 5)
Fi(x) = x(2x(45 + 32x + 5x%) + x(15 + 8x + x?)cos(x) + (30 + 24x + 4x?)sin(x))



Differentiation of Computer Programs
Automatic differentiation (AD)

R Exact
@ @ Fast O(min(m, n))

T R" — R”

QDlQJ




Forward vs Reverse mode AD

da*c f: Rm —_— Rn

Forward ~ m

Reverse ~ n




Agent-Based Models

* EXpensive to calibrate

e Difficult to interpret / validate




Differentiable Agent-Based Models

Can ABMs be made differentiable?

_Yes, they can —

Meaningful gradients?



Case study: the JUNE epidemiological model

* JUNE is a 1:1 epi model of England (56 million agents)

- GradABM-JUNE s its differentiable implementation (PyTorch).

Sunulation Tensorisation enables
JUNE 50 hours scalability to millions
GRADABM-JUNE (GPU) | 5 seconds (billions?) of agents
References:

arnau.ai/talks




Case study: the JUNE epidemiological model

» We can use generalized variational inference for calibration

Simulation Calibration Bayesian
(No UQ) Calibration
JUNE 50 hours - 100k hours
GRADABM-JuUNE (GPU) | b5 seconds 20 minutes [\8 hours

Differentiability enables fast

and accurate model calibration




Variational Inference:
Bayesian inference as an optimisation problem

1. Assume posterior can be

approximated by a family of
distributions

2. Optimise for optimal
parameters




Generalised Variational Inference «nobiauch etal. 2022)
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Gradients: path-wise vs score

* (Gradient-assisted calibration algorithms need

VoEpo:) 110

O

. . simulator
posterior estimator

* Two ways of obtaining the gradient:

1. Differentiating the measure (score-based gradient)

2. Differentiating the simulator (path-wise gradient)

Typically path-wise gradient has (much) lower variance (see Mohamed (2019))



Generalised Variational Inference

Normalizing | _| Differentiable | X y
Flow | Simulator
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Normalizing Flows

What do we choose for q? Image credit: Lilian Weng

e A
/ \ / \
I \ I/ \
| , ' | ! !
\\ > \\ >, \\ S
\ \ /
\ //
Zgy ~ po(Zo) Zj ~ pi(Zi) LK PK(ZK)
0.7
0.6 1
0.5 1
0.4 -
0.3 -
0.2 1
0.1 1
0.0 ' '
—4 4




Experiment with JUNE

* > 8M agents (London)

* 10 layers of interactions (household, company,
school, pub, ...)

e 1 Seed parameter

e Calibrate to synthetic data



Gradient Horizon Problem
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Gradient Horizon Problem

Suppose we run an ABM with parameters 6 for 4 time-steps
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Gradient Horizon Problem

dx Truncating the gradient
0 * * reduces variance!

= 100 Score function
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Gradient Horizon Problem

l.oss
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Loss

beta_household = 0.11+32%

beta_company = 0.36923

Number of infections
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Sensitivity Analyses (SA)

AD performs SA

with a single simulation run,

Independent of # of parameters!




The impact of uncertainty on predictions of
the CovidSim epidemiological code

Wouter Edeling', Hamid Arabnejad ©?2, Robbie Sinclair3, Diana Suleimenova?,
Krishnakumar Gopalakrishnan®?3, Bartosz Bosak®, Derek Groen?, Imran Mahmood?,
Daan Crommelin'™ and Peter V. Coveney ® 36

Epidemiological modelling has assisted in identifying interventions that reduce the impact of COVID-19. The UK government
relied, in part, on the CovidSim model to guide its policy to contain the rapid spread of the COVID-19 pandemic during March
and April 2020; however, CovidSim contains several sources of uncertainty that affect the quality of its predictions: paramet-
ric uncertainty, model structure uncertainty and scenario uncertainty. Here we report on parametric sensitivity analysis and
uncertainty quantification of the code. From the 940 parameters used as input into CovidSim, we find a subset of 19 to which
the code output is most sensitive—imperfect knowledge of these inputs is magnified in the outputs by up to 300%. The model
displays substantial bias with respect to observed data, failing to describe validation data well. Quantifying parametric input
uncertainty is therefore not sufficient: the effect of model structure and scenario uncertainty must also be properly understood.

Ensemble execution. Consequently, through the use of adaptive methods we make
the uncertainty analysis of CovidSim tractable, but our analysis nevertheless
required us to perform thousands of runs, each with its own unique set of

input parameters. Specifically, we used the Eagle supercomputer at the Posnan Reve rse- mode AD

Independent of number of
parameters!
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Conclusions

Differentiable agent-based models enable:
1.Fast simulation via tensorisation.
2.Fast and accurate Bayesian calibration via gradients.

3.Fast and accurate sensitivity analyses via gradients.

Papers + slides: arnau.ai/talks




Backup slides




Differentiable Control Flow

79
x" = Argmax (xf)

7

x' = Softmax (/;/’;*/)

7



Differentiable Stochasticity

Continuous Variables

x~N(u,0) &< x=u+or r~ N0O,1)
dx dx

— =] — =7
du do



Differentiable Stochasticity

Discrete Variables

e Gumbel-Softmax

a)

Categorical r=0.1 = (.5 7= 1.0 r = 10.0

JL[LJ___L_

category

expectation

sample

Jang et al. (2016)



