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collective prioritizes test speed over accuracy...

— Slower, More Specific Test
Faster, Less Specific Test

Cumulative Mortality, Rate per 100,000

0 75 50 75 100 125 150 175
Simulation Day

Collective outcomes can be very different from the sum of individual choices




modeling collective behavior is critical



e build bridges?
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Collective behavior across scales and substrates

Cities Citizens Cells

Supply Chains Pandemics Morphogenesis

bit.ly/diff-abms



Collective behavior across scales and substrates

Cities Citizens Cells

Supply Chains Pandemics Morphogenesis

how to capture?
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Agent-based Models
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Simulate microscopic behavior and interactions in heterogeneous collectives



ABMs vs Multi-Agent Reinforcement Learning

ABMs MARL
* Many agents * Few agents
e Simple behavior * Complicated behavior

Flocking birds itly/dittabms Starcraft2 (AlphaStar)



long history of research and open challenges
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Simulation? Multi-modal? Behaviour?
Calibrate? Multi-scale? Mechanism?

Analyze? Distributed? Real-world feedback?



Proposal: Differentiable Agent-based Modeling
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Simulation? Multi-modal? Behaviour?
Calibrate? Multi-scale? Mechanism?
Analyze? Distributed?

Real-world feedback?

Vectorization Gradient-based Neural Network
learning composition




Agent-based Model
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Why do we care about the gradient?

Simulate country-scale ecosystems for few hundred dollars on commodity hardware
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50 hours 100,000 hours 5,000 hours
Differentiable ABM 5 minutes 20 minutes 10 seconds
Gra_dABM run-time scales linearly with number of interactions
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Numbe;r of agent interactions
https://royalsocietypublishing.org/doi/10.1098/rs0s.210506 8 million London agents



Differentiable ABMs are being deployed across domains
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Scope of tutorial

* Preliminaries
e Background to automatic differentiation
* Implement a differentiable ABM

e Algorithms

* Techniques to calibrate and analyze differentiable ABMs
* Applications

* Real-world case study in New Zealand

* Systems
* Tooling to build and calibrate differentiable ABMs at scale



Scope of tutorial

* Preliminaries
e Background to automatic differentiation
* Implement a differentiable ABM



Automatic Differentiation



Building a Differentiable ABM



Scope of tutorial

e Algorithms
* Techniques to calibrate and analyze differentiable ABMs
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New Transmission

Dynamics and Interventions

COVID-19
TESTING & VACCINES

Health Interventions
(Testing, Vaccination, Lockdowns)

Disease Progression

Financial Interventions
(Stimulus, PUA, PPP, FPUC)



Gradient-assisted calibration



Inner Loop: GradABM simulates county population using (6, 8p ) for K steps
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Inner Loop: GradABM simulates county population using (6, 8p ) for K steps
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Inner Loop: GradABM simulates county population using (6, 8p ) for K steps
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Inner Loop: GradABM simulates county population using (6, 8p ) for K steps
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Inner Loop: GradABM simulates county population using (6, 8p ) for K steps
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Inner Loop: GradABM simulates county population using (6, 8p ) for K steps

Ground truth
casedata
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Mode 1: Calibrate parameters with
gradient descent (c-GRADABM)
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Inner Loop: GradABM simulates county population using (6, 8p ) for K steps
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Aggregate predictions
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Inner Loop: GradABM simulates county population using (6, 8p ) for K steps
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Outer Loop: Calib-NN predictinfection parameters (67, 8p ) for county population used in differentiable GradABMand is optimized using end-to-end gradient flow

Inner Loop: GradABM simulates county population using (6, 85 ) for K steps
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Outer Loop: Calib-NN predictinfection parameters (67, 8p ) for county population used in differentiable GradABMand is optimized using end-to-end gradient flow
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Mode 2: Calibrate generator
function with gradient descent
(dc-GRADABM)

Inner Loop: GradABM simulates county population using (6, 85 ) for K steps
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Outer Loop: Calib-NN predictinfection parameters (67, 8p ) for county population usedin differentiable GradABMand is optimizes using end-to-end gradient flow

Stepl : Heterogenous county data used to
predictinfection transmission and disease
progression (8, 6) parameters
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Inner Loop: GradABM simulates county population using (6, 8p ) for K steps

Step2: Ineach step,
infectionis
transmitted via
agent interaction
anddiseasestage
progress for infected
agents.

Step 3: Prediction
error (loss)is
computed between
aggregate statistics of
GradABM and CDC
casedata

SEI RM

Aggregate predictions
from GradABM

Step 4: Gradientof loss
is computed via

backpropagation
through GradABM and
is used to update

(6r,6p)

Ground truth
casedata

Loss Function (L)
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Gradients enable fast calibration over emulators: 100k to 12 CPU hours

—— Observed Data
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Calibrate with ensemble learning to reduce overfitting
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Inner Loop: GradABM simulates county population using (6, 8p ) for K steps
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Calibrate with ensemble learning to reduce overfitting
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Mode 3: Calibrate generator
function jointly with gradient
descent (jdc-GRADABM)

Inner Loop: GradABM simulates county population using (6, 8p ) for K steps
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Calibrate posteriors with variational inference

Inner Loop: GradABM simulates county population using (6, 85 ) for K steps
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Mode 4: Calibrate with uncertainty

quantification (dc-GRADABM)
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Gradient-assisted sensitivity analysis



Sensitivity Analysis is critical for validation

The impact of uncertainty on predictions of
the CovidSim epidemiological code

Wouter Edeling', Hamid Arabnejad @2, Robbie Sinclair3, Diana Suleimenova?,
Krishnakumar Gopalakrishnan©3, Bartosz Bosak®, Derek Groen?, Imran Mahmood?,
Daan Crommelin's and Peter V. Coveney ©®3¢&

Epidemiological modelling has assisted in identifying interventions that reduce the impact of COVID-19. The UK government
relied, in part, on the CovidSim model to guide its policy to contain the rapid spread of the COVID-19 pandemic during March
and April 2020; however, CovidSim contains several sources of uncertainty that affect the quality of its predictions: paramet-
ric uncertainty, model structure uncertainty and scenario uncertainty. Here we report on parametric sensitivity analysis and
uncertainty quantification of the code. From the 940 parameters used as input into CovidSim, we find a subset of 19 to which
the code output is most sensitive—imperfect knowledge of these inputs is magnified in the outputs by up to 300%. The model
displays substantial bias with respect to observed data, failing to describe validation data well. Quantifying parametric input
uncertainty is therefore not sufficient: the effect of model structure and scenario uncertainty must also be properly understood.

Ensemble execution. Consequently, through the use of adaptive methods we make
the uncertainty analysis of CovidSim tractable, but our analysis nevertheless
required us to perform thousands of runs, each with its own unique set of

input parameters. Specifically, we used the Eagle supercomputer at the Posnan



Recap: Reverse-mode automatic differentiation
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Sensitivity analysis via reverse-mode automatic differentiation

Reverse-mode automatic differentiation is independent of the number of parameters!!

[ Daily deaths ]




How effective really were lockdown policies?

Analyze retrospective decisions by reproducing seroprevalence studies in-silico

124 —+ —}— GradABM-JUNE
—— Ward +21

10 -

Prevalence [%]

18-24 25-34 35-44 45-54 55-64 65-74 15+
Age bin



What could we have done differently?

Design counterfactual lockdown policies with multiple constraints in-silico!

10° -

Cumulative cases

10°

—— Optimal cost-effective lockdown
Naive cost-effective lockdown

—— Real lockdown

— No lockdown

Mar Apr May



How sensitive was infection to ethnicity?

More infection among South Asians through households in contrast to white British people

Ethnicity
Em \White
University 1 mmm Mixed
BN Asian
EE Black
B Other
School -
Household -
Company A
—-0.06 —-0.04 —-0.02 0.00 0.02

Sensitivity of ¢



How sensitive was infection to age?

Dominant infection spread through schools for 0-17 and university for 18-24

i Age bin
sl 0-17 B 45-54
University 1 18-24 BN 55-64
g B 25-34 65-74
B 35-44 B 75+
School A
S —
Household -
Company -
——
-0.2 -0.1 0.0 0.1 0.2 0.3

Sensitivity of f¢



What if we delay second dose of the COVID-19 vaccine?

Supply chain limitations and population behavior to design immunization policies

What if we delay second dose of COVID-19 vaccine?

N GradABM
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What if we delay second dose of the COVID-19 vaccine?

Consider supply chain limitations and population behavior to design immunization policies

What if we delay second dose of COVID-19 vaccine?
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Efficacy of first COVID-19 vaccine dose
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was higher under the 12-week strategy than the 3-week strategy. For this period, we estimated that delaying the
interval between the first and second COVID-19 vaccine doses from 3 to 12 weeksfaverted a median] (calculated as the
median of the posterior sample) off 58000 COVID-19 hospital admissiong (291000 cumulative hospitalisations
[95% credible interval 275000-319000] under the 3-week strategy vs 233000 [229000-238000] under the 12-week
strategy)fand 10100 deaths](64800 deaths [60200-68900] vs 54700 [52800-55 600]). Similarly, we estimated that the

Retrospective impact of delaying 2" covid-19 dose in England
(Lancet ‘23)



More details: Jade Room 3 on Friday at 10 am

- Composing with neural networks
- Using LLM as agents for million-scale simulations
- Modelingwith private and distributed data
- Generating diverse simulation scenarios



Scope of tutorial

* Applications
* Real-world case study in New Zealand



Differentiable ABMs in action:
Case Study of New Zealand



Scope of tutorial

* Systems
* Tooling to build and calibrate differentiable ABMs at scale



Variational Inference with Blackbirds

github.com/arnauqb/blackbirds

pip install blackbirds



Bayesian inference
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Variational Inference:

Bayesian Inference as an optimization problem

1.Assume posterior can be
approximated by a family of
distributions

2.0ptimise for optimal
parameters
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Build your own Differentiable ABMs with AgentTorch

github.com/AgentTorch/AgentTorch

pip install agent-torch



Using the AgentTorch API

execute simulation
talk to your simulation
customize agents (eg: LLM as agent)
customize population (eg: NZ -> NYC)



Execute a simulation with AgentTorch

Simple Python API. Get started in 3 lines of code. Massive Acceleration. "Al Compatible"

r

from AgentTorch.models import disease
from AgentTorch.populations import new_zealand

from AgentTorch.execute import Executor

simulation = Executor(disease, new_zealand)
simulation.execute()



Gradient-based learning with AgentTorch

Pytorch compatible. Optimize parameters. Compose with Neural Networks

from torch.optim import SGD

optimizer = SGD(simulation.parameters())
for 1 i1n range(episodes):
optimizer.zero_grad( )
simulation.execute( )
optimizer.step()
simulation.reset()



Visualize your simulation with AgentTorch

Interactive geo-plots and natural language interface

from AgentTorch.visualize import Visualizer
from AgentTorch.LLM.qa import load_state_trace

state trace = load state trace(simulation)
visualizer = Visualizer(state trace)

visualizer.plot('agent_behavior')



Visualize your simulation with AgentTorch

Interactive geo-plots and natural language interface

from AgentTorch.visualize import Visualizer
from AgentTorch.LLM.qa import load_state_trace

state trace = load state trace(simulation)
visualizer = Visualizer(state trace)

visualizer.plot('agent_behavior')



Talk to your AgentTorch simulation

Understand the past. "brainstorm" for the future. Verify the data. Speculate reliably.

00
from AgentTorch.LLM.ga tmport SimulationAnalysisAgent
analyzer = SimulationAnalysisAgent(simulation, state_trace)

analyzer.query("Which age group has lowest median income, how
much is 1t?")

analyser.query("how are stimulus payments affecting disease?")



Customize agents in AgentTorch

Agents can be heuristic, LLMs or neural networks

from AgentTorch.dataloader import DatalLoader

dataloader = DataLoader(new_zealand)
dataloader._set_config_attribute('use_llm_agent', True)
dataloader._set_config_attribute( 'prompt’', AGENT_PROMPT)

Llm_simulation = Executor(disease, dataloader)
LIm_simulation.execute()



Build a new simulator:
Predator prey model



<Type 1> <Type A> = ..........................................................................
i s runner . ini
property1 property1 5 Agent-Agent = (reset the state before each step)
property2 Hl property2 g 3 B A R T e
: 9 = | - | essesaEeRrsERTaRe ety
: c _Ohi : tate(s)
Agent-Object : & .
( nn.Parameter ) : ( nn.Parameter ) _ : J (run one step of the simulation)
agent_torch. (fin.Parameterdict) :.:::::::::::::::::::::::::::. ............................................
Registry & Config Runner . output = runner.trajectory
M —— m— : (nn.Modules) T (nn.Module) (parse current and previous states)
T \ loss = loss_fn(output, truth)

agent_torch. function {nn.Module) | (calculate the loss)

Step K im(runner m r
amdl Substep M — gl Substep N B (optimize learnable parameters)
step(s)

(nn.ModuleDict) (nn.ModuleDict)

state_init state_final




Scope of tutorial

* Preliminaries
e Background to automatic differentiation
* Implement a differentiable ABM

e Algorithms

* Techniques to calibrate and analyze differentiable ABMs
* Applications

* Real-world case study in New Zealand

* Systems
* Tooling to build and calibrate differentiable ABMs at scale



Questions and Discussion



References

Systems
* Aframework for learning in Agent-based Models (AAMAS 2024)
* BlackBIRDS: Black-Box Inference foR Differentiable Simulators (JOSS 2023)

Methods

» Differentiable Agent-based Epidemiology (AAMAS 2023)

* Don't Simulate Twice: One-Shot Sensitivity Analyzes via Automatic Differentiation (AAMAS 2023)
* Private Agent-based Modeling (AAMAS 2024)

* Population synthesis as scenario generation for simulation-based planning under uncertainty (AAMAS 2024)

Applications
* Public health impact of delaying second dose of BNT162b2 or mRNA-1273 covid-19vaccine (BMJ 2021)
* Composing and evaluating interventions with ABM (AAMAS 2024, Best Student Paper Award Finalist!)
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