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"What kind of a test do you want?"
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collective prioritizes test speed over accuracy...

Collective outcomes can be very different from the sum of individual choices



modeling collective behavior is critical



build bridges?
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Collective behavior across scales and substrates

Supply Chains

Cities Citizens Cells

Pandemics Morphogenesis
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Collective behavior across scales and substrates

Supply Chains

Cities Citizens Cells

Pandemics Morphogenesis

how to capture?
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 Agent-based Models

Simulate microscopic behavior and interactions in heterogeneous collectives



ABMs vs Multi-Agent Reinforcement Learning

ABMs

• Many agents

• Simple behavior

MARL

• Few agents

• Complicated behavior

Starcraft2 (AlphaStar)Flocking birds bit.ly/diff-abms



long history of research and open challenges

Computation Data Expressiveness

Simulation?
Calibrate?
Analyze?

Multi-modal?
Multi-scale?
Distributed?

Behaviour?
Mechanism?

Real-world feedback?



Proposal: Differentiable Agent-based Modeling

Computation Data Expressiveness

Simulation?
Calibrate?
Analyze?

Multi-modal?
Multi-scale?
Distributed?

Behaviour?
Mechanism?

Real-world feedback?

Vectorization Gradient-based
learning

Neural Network
composition



Agent-based Model

Differentiable if

exists
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Why do we care about the gradient?

Simulate country-scale ecosystems for few hundred dollars on commodity hardware

Method Simulation Calibration Analysis

ABM 50 hours 100,000 hours 5,000 hours

Differentiable ABM 5 minutes 20 minutes 10 seconds

8 million London agentshttps://royalsocietypublishing.org/doi/10.1098/rsos.210506



Differentiable ABMs are being deployed across domains
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Scope of tutorial

• Preliminaries
• Background to automatic differentiation

• Implement a differentiable ABM

• Algorithms
• Techniques to calibrate and analyze differentiable ABMs

• Applications
• Real-world case study in New Zealand

• Systems
• Tooling to build and calibrate differentiable ABMs at scale
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Automatic Differentiation
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Building a Differentiable ABM
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Critical Challenges
Rapid Action
Effective Policies



Disease ProgressionNew Transmission

Dynamics and Interventions

Health Interventions 

(Testing, Vaccination, Lockdowns)

Financial Interventions 

(Stimulus, PUA, PPP, FPUC)



Gradient-assisted calibration



Progress(𝜃𝑃)

𝜃𝑇 , 𝜃𝑃

Inner Loop: GradABM simulates county population using (𝜃𝑇 , 𝜃𝑃  ) for K steps
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Inner Loop: GradABM simulates county population using (𝜃𝑇 , 𝜃𝑃  ) for K steps

K steps

Aggregate predictions 
from GradABM

bit.ly/diff-abms



Progress(𝜃𝑃)

Loss Function (L)

𝜃𝑇 , 𝜃𝑃

Inner Loop: GradABM simulates county population using (𝜃𝑇 , 𝜃𝑃  ) for K steps

K steps

Ground truth 
case data

Aggregate predictions 
from GradABM
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Progress(𝜃𝑃)

Loss Function (L)

𝜃𝑇 , 𝜃𝑃

Inner Loop: GradABM simulates county population using (𝜃𝑇 , 𝜃𝑃  ) for K steps

K steps

Ground truth 
case data

Aggregate predictions 
from GradABM

Mode 1: Calibrate parameters with 
gradient descent (c-GRADABM)
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Progress(𝜃𝑃)

Loss Function (L)
Calib-NN
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Progress(𝜃𝑃)

Loss Function (L)
Calib-NN

𝜃𝑇 , 𝜃𝑃

Contextual 
data
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Aggregate predictions 
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Progress(𝜃𝑃)

Loss Function (L)
Calib-NN

𝜃𝑇 , 𝜃𝑃

∇ 𝐿𝜃{𝑇,𝑃}

Inner Loop: GradABM simulates county population using (𝜃𝑇 , 𝜃𝑃  ) for K steps

Outer Loop: Calib-NN predict infection parameters (𝜃𝑇 , 𝜃𝑃 ) for county population used in differentiable GradABM and is optimized using end-to-end gradient flow 

K steps

Ground truth 
case data

Aggregate predictions 
from GradABM

Contextual 
data
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Aggregate predictions 
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Mode 2: Calibrate generator 
function with gradient descent 

(dc-GRADABM)

Contextual 
data
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Progress(𝜃𝑃)

Loss Function (L)
Calib-NN

𝜃𝑇 , 𝜃𝑃

∇ 𝐿𝜃{𝑇,𝑃}

Inner Loop: GradABM simulates county population using (𝜃𝑇 , 𝜃𝑃  ) for K steps

Outer Loop: Calib-NN predict infection parameters (𝜃𝑇 , 𝜃𝑃 ) for county population used in differentiable GradABM and is optimizes using end-to-end gradient flow 

K steps

Ground truth 
case data

Aggregate predictions 
from GradABM

Step1 : Heterogenous county data used to 
predict infection transmission and disease 

progression (𝜃𝑇 , 𝜃𝑃 ) parameters

Step2: In each step, 
infection is 

transmitted via 
agent interaction 
and disease stage 

progress for infected 
agents.

Step 3: Prediction 
error (loss) is 

computed between 
aggregate statistics of 

GradABM and CDC 
case data

Step 4: Gradient of loss 
is computed via 

backpropagation 
through GradABM and 

is used to update 

(𝜃𝑇 , 𝜃𝑃)

Contextual 
data
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Gradients enable fast calibration over emulators: 100k to 12 CPU hours



Calib-NN

Loss Function (L)

Ground truth 
case data

Calibrate with ensemble learning to reduce overfitting

Contextual 
data
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Calib-NN

Loss Function (L)

Ground truth 
case data

Calibrate with ensemble learning to reduce overfitting

bit.ly/diff-abms

Mode 3: Calibrate generator 
function jointly with gradient 

descent (jdc-GRADABM)

Contextual 
data



Progress(𝜃𝑃)

Loss Function (L)

Calib-NN
NormFlow

𝜃𝑇 , 𝜃𝑃

Inner Loop: GradABM simulates county population using (𝜃𝑇 , 𝜃𝑃  ) for K steps

K steps

Ground truth 
case data

Aggregate predictions 
from GradABM

Calibrate posteriors with variational inference

MSE to MMDRNN to Normalizing Flow1 2

Mode 4: Calibrate with uncertainty 
quantification (dc-GRADABM)
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Gradient-assisted sensitivity analysis



Sensitivity Analysis is critical for validation



Recap: Reverse-mode automatic differentiation



Sensitivity analysis via reverse-mode automatic differentiation

Reverse-mode automatic differentiation is independent of the number of parameters!!



How effective really were lockdown policies?

Analyze retrospective decisions by reproducing seroprevalence studies in-silico 



What could we have done differently?

Design counterfactual lockdown policies with multiple constraints in-silico! 



How sensitive was infection to ethnicity?

More infection among South Asians through households in contrast to white British people



How sensitive was infection to age?

Dominant infection spread through schools for 0-17 and university for 18-24



What if we delay second dose of the COVID-19 vaccine?

Supply chain limitations and population behavior to design immunization policies
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What if we delay second dose of the COVID-19 vaccine?

Consider supply chain limitations and population behavior to design immunization policies

Retrospective impact of delaying 2nd covid-19 dose in England 
(Lancet ‘23)
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More details: Jade Room 3 on Friday at 10 am

bit.ly/diff-abms

- Composing with neural networks
- Using LLM as agents for million-scale simulations

- Modeling with private and distributed data
- Generating diverse simulation scenarios
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• Applications
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• Systems
• Tooling to build and calibrate differentiable ABMs at scale

bit.ly/diff-abms



Differentiable ABMs in action: 
Case Study of New Zealand
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Variational Inference with Blackbirds

github.com/arnauqb/blackbirds

pip install blackbirds
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Bayesian inference
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Variational Inference:
Bayesian Inference as an optimization problem

1.Assume posterior can be 
approximated by a family of 
distributions

2.Optimise for optimal 
parameters

bit.ly/diff-abms
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Build your own Differentiable ABMs with AgentTorch

github.com/AgentTorch/AgentTorch

pip install agent-torch
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Using the AgentTorch API

execute simulation
talk to your simulation

customize agents (eg: LLM as agent)
customize population (eg: NZ -> NYC)



Execute a simulation with AgentTorch

Simple Python API. Get started in 3 lines of code. Massive Acceleration. "AI Compatible"



Gradient-based learning with AgentTorch

Pytorch compatible. Optimize parameters. Compose with Neural Networks



Visualize your simulation with AgentTorch

Interactive geo-plots and natural language interface



Visualize your simulation with AgentTorch

Interactive geo-plots and natural language interface



Talk to your AgentTorch simulation

Understand the past. "brainstorm" for the future. Verify the data. Speculate reliably.



Customize agents in AgentTorch

Agents can be heuristic, LLMs or neural networks



Build a new simulator:
Predator prey model
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Questions and Discussion

bit.ly/diff-abms



References

Systems

• A framework for learning in Agent-based Models (AAMAS 2024)

• BlackBIRDS: Black-Box Inference foR Differentiable Simulators (JOSS 2023)

Methods

• Differentiable Agent-based Epidemiology (AAMAS 2023)

• Don't Simulate Twice: One-Shot Sensitivity Analyzes via Automatic Differentiation (AAMAS 2023)

• Private Agent-based Modeling (AAMAS 2024)

• Population synthesis as scenario generation for simulation-based planning under uncertainty (AAMAS 2024)

Applications

• Public health impact of delaying second dose of BNT162b2 or mRNA-1273 covid-19 vaccine (BMJ 2021)

• Composing and evaluating interventions with ABM (AAMAS 2024, Best Student Paper Award Finalist!)
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